在人工智能为区块链提供更强大拓展场景与数据分析能力的同时,区块链技术可为人工智能提供高度可信的原始数据以支持其持续的“深度学习”。在未来人工智能高度发展的同时,也可通过区块链的分布式、透明、可溯源的特点,来保障人工智能始终处于人类可控的范围之内。这对两者的技术发展进程都提出了更高的要求,总体而言,区块链技术本身处于早期阶段,与人工智能相结合需要持续迭代以满足人工智能对性能和稳定性的要求。
“区块链+AI”两项尖端科技能相互赋能,区块链与人工智能两项技术的结合,有以下七个方面的优势:一是区块链可以提高人工智能的数据安全性;二是区块链可以加速数据的累积,给人工智能提供更强大的数据支持,解决AI的数据供应问题;三是区块链可以解决数据收集时的数据隐私问题;四是人工智能可以减少区块链的电力消耗;五是区块链使得人工智能更加的可信任;六是区块链帮助人工智能缩短训练时间;七是区块链有助于打造一个更加开放与公平化的人工智能市场。
而“区块链+AI”面临的挑战主要包括两方面:一方面是AI和区块链自身的缺点,在结合后仍无法有效解决;另一方面是AI和区块链结合过程中可能造成原有优势被破坏。具体有以下4种风险:
一是政策性风险。区块链目前部分的衍生应用在世界各地存在着一定的政策风险——例如未来是否采用区块链技术伴生的通证来激励人工智能开发或节点管理,但无论是在经济上还是在政策上如何定义通证仍有很大的不确定性。
二是技术融合的不确定性。作为两个前沿的新兴技术,且都处于尚未完全成熟的阶段。无论是从当前区块链的技术指标,还是从人工智能的实际落地性来讲,距离两者真正的结合并实现落地,需要面对的不确定性因素仍然存在。目前区块链的主要问题为扩容、隐私、和计算能力,主流的公有链难以支撑人工智能的链上实现。
三是大规模的社会应用面临挑战。数据共享威胁大型企业利益。通过弱化数据的中心化,降低了大型企业相对小公司的竞争优势。如果任何人都可以访问这些数据集和计算,那么任何人都有机会与世界上最大的公司竞争。从技术领域中去除这些障碍将会改善社会,但共享市场的尝试可能会让大公司感到不安。如果任何人都有能力在世界上制造出最好的人工智能,那么市场将与许多正在争夺一部分市场的初创企业和小企业共同分享。之前使用用户数据来制定广告或业务策略的公司和政府组织将再次被迫以较不直接的方式获取其数据。因此,大公司可能会反对数据去中心化,并可能游说维持AI模型开发方面集中式数据集的现状。
四是不可控性。当使用了“一旦运行不可停止”的智能合约时,如果合约代码存在漏洞被黑客利用,黑客将通过智能合约漏洞牟利,因在区块链上运行的事务和交易不可撤销,可能会给企业和个人造成不可挽回的损失。
本文地址: https://www.xiguacaijing.com/news/guandian/2018/1596.html
赞助商